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Industrial Context
• Uncertainty of the Temperature Measurement :

– Heterogeneity generates uncertainty
in the measurement

• Temperature measurements are useful for several task in the plant operation:
– Protection systems based on core Inlet/Outlet Temperature differences
– Control rod guide tubes insertion/extraction
– Primary Flow measurement by enthalpy balance

• Primary Volume Flow Qp :
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Overview of the CFD study
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Temperature heterogeneities:
• Appear in the reactor core due to the power distribution 
• Transported through reactor by secondary structures
• Still present at the end of the hot leg

Objectives of the study:
• Get a better understanding of the physical phenomena 
leading to heterogeneities
• Reduce the uncertainty on the temperature 
measurement in the hot leg
• Validate CFD results by comparing with experimental 
results 

Temperature map at the core outlet

CFD MeshExperimental set
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Overview - Different cases of the study

• Elementary case
– Try different configurations
– Scalabily tests (mock-up scale to full-scale)

• Mock-up scale studies 
– Reynolds 106 in the hot legs
– Comparison with experimental data
– Validation of the CFD code

• Reactor scale studies
– Reynolds 108 in the hot legs
– Reactor measurements available
– Full scale validation
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Simplified geometry
Quarter plenum

EPR mock-up ROMEO 

N4 Reactor – Upper Plenum and hot legs
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Overview - Computational cost
• Mock-up scale calculations :

– Y+ up to 1500 in the hot leg for a 35M
cells mesh!

– 2 months calculations

• Reactor Scale calculations :
– First results on a 30M cells mesh yields 

values of y+ up to 10 000
– Necessity to refine the mesh to reach 

optimal values of y+

– Refined mesh may exceed 200M cells

• Hardware
– Blue Gene Q 65000 Processors Cluster
– Calculations done on 8000 Processors
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CFD Results
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Results – Secondary Structures

• We could show using CFD that secondary 
structures can prevent the good mixing of 
the flow 

• We could also show the influence of the 
control rod guide tubes on the secondary 
structures
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Average Tangential velocity in a hot leg 
section

Average Temperature in a hot leg section

Instantaneous Tangential velocity in a hot leg 
section



Results - Temperature Heterogeneity in the 
Hot Leg

• Unsteady Results
Numerically and experimentally, we 
observe an unsteady behavior

• Temperature Heterogeneity
We thus consider the time average
to characterize the heterogeneity

9

Evolution of the Temperature map along the hot leg
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Results - Time step dependence
Expérience                       Dt = 5e-4                     Dt = 5e-5

CFLmax= 19                  CFLmax= 2.1

Tangential velocity in a hot leg section

Location of the maximum of the CFL
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• A Time step dependence is 
observed

• Criteria frequently used in 
Code_Saturne to choose the time 
step value: 

Maximum CFL ≈ 1

• Investigation of the 
representativeness of the criteria 
to choose the time step
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Which CFL criteria have to be used?
• Distribution of the CFL over the mesh:

- Maximum CFL :  2.1
- Space Averaged CFL  : 0.066
- Ratio Max/Average : 32

• Disadvantage of the Mean CFL:
- Takes into account cells with lower   

influence on the physics

• Possible criteria investigated:
- Average CFL over a Given part of the mesh
- Discriminate cells of lower importance using 

a Criteria (example slower velocities)

11

Distribution of the CFL

Discrimination of lower velocity cells
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Steady-State – Upper plenum case
• One objective of the Steady-State 
calculation is to reduce calculation time.

Time gain: from several months to
a few weeks

• Usage of the Code_Saturne Steady-
State Algorithm:
(space and time dependent time step)
The results couldn’t be made steady

• Considering the very high number of 
cells involved in full scale calculations, it 
seems necessary to have a different 
Algorithm

Unsteady Algorithm Steady Algo

Iterations

Velocity at different points in the mesh
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Steady-State – New Algorithm
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•  Basic Idea of the Algorithm:
Force current solution towards a target solution by adding a term in Navier-
Stokes

Navier-Stokes:  

•  Target solution ftarget :
The target solution is the filtered current solution

Differential form of the Filtered Solution : 

Exponential filter T :  

Differential form of the Filtered solution filter :
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Steady-State – Cylinder in a flow
• Test of a different algorithm on the elementary case “Cylinder in a laminar flow”
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Velocity Vx – Unsteady Calculation Velocity Vx - Time Averaged
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Reynolds Re= 100 Inlet : Uniform velocity

Free Outlet No slipping conditions on cylinder wall
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Steady-State – Results
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Saturne basic Steady-State Algo
(IDTVAR = 2)         (COUMAX = 1) New Algorithm
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•  Steady Results:

Time Averaged Unsteady Result :



Perspectives of the study

• Reactor Scale validation on the go
- Involves Fine Meshes !

• Very long computation time expected

• Steady Calculation could avoid months of 
calculation time
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Thank you for your attention !
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Results - Turbulence Models dependence

• K-ϵ - (Isotropic modelisation of Reynolds Stresses and Turbulent thermal flux)

• Rij - (Anisotropic modelisation of Reynolds Stresses, Isotropic modelisation of 
Turbulent thermal flux(SGDH) )
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Instantaneous Tangential Velocity Time Averaged Tangential Velocity 

Instantaneous Tangential Velocity Time Averaged Tangential Velocity 

(Test on elementary case)
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